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Introduction

It has long been debated whether approach and avoidance behaviors are controlled by largely segregated and functionally disso-
ciable neural systems or they are served by a common neural mechanism (Boureauand Dayan, 2011; Cools et al., 2011; Palminteri
and Pessiglione, 2017). In fact, much anatomical as well as neuropharmacological evidence seems to support the dual systems view.
For example, one network including the ventromedial prefrontal cortex (vmPFC) and the nucleus accumbens (NAC)/the ventral
striatum (VS) is preferentially involved in approach behavior, whereas another network including the dorsomedial prefrontal cortex
(dmPFC), the dorsal striatum (DS), the insula, and the amygdala is involved in avoidance behavior (Palminteri and Pessiglione,
2017). In addition, this dual systems view seems to be also supported by functional dissociation between dopaminergic (DA)
and serotonergic (5-HT) neuromodulatory systems, which have been shown to be involved in approach and avoidance behaviors,
respectively (Daw et al., 2002). Alternatively, other theoretical and empirical studies support the unified system view, which suggests
that approach and avoidance behaviors are not clearly distinguished from each other, possibly sharing common neural circuitries
(Kim et al., 2006; Palminteri et al., 2015; Solomon and Corbit, 1974). In this article, I will first review some key neural substrates of
approach and avoidance behaviors, highlighting the inconsistencies between findings that support the dual vs. unified systems
views. Later I will suggest an alternative model of approach and avoidance learning based on hierarchical allostatic regulation,
whereby conflicts in competing internal bodily needs are regulated by incorporating external sensory information. This model
can provide a useful theoretical framework to reconcile the inconsistencies, to integrate the current findings, and to raise concrete
and testable hypotheses.

Neural Substrates of Approach and Avoidance Behaviors

Ventral and Dorsal Cortico-Striatal Loop

The ventromedial prefrontal cortex (vmPFC) together with the ventral striatum comprise the ventral cortico-striatal loop (Haber
and Knutson, 2010), which has been strongly implicated in approach and reward-seeking behaviors (Bartra et al., 2013; Chib
et al., 2009; Delgado et al., 2000; Kable and Glimcher, 2007; Kim et al., 2007; Kim et al., 2011; O’Doherty, 2011). However,
the ventral cortico-striatal loop has also been associated with active avoidance behavior (Kim et al., 2006; Levita et al., 2012),
encoding successful avoidance particularly under contexts with a negative expected value (Palminteri et al., 2015). Unlike the
ventral cortico-striatal loop, its dorsal counterpart including the dmPFC and the dorsal striatum is involved in avoiding punish-
ment (Delgado et al., 2009; Palminteri et al., 2012; Pessiglione et al., 2006; Seymour et al., 2007; Shenhav and Buckner, 2014).
The dmPFC has often been shown to respond to negative outcomes such as pain (Rainville et al., 1997), monetary loss (Liu et al.,
2011), as well as social rejection (Eisenberger et al., 2003). However, the dorsal cortico-striatal loop has also been implicated in
reward learning particularly when effort is required. For example, selective lesioning of dmPFC leads to increased preference for
low effort options (Schweimer et al., 2005; Walton et al., 2002), whereas its activity increases positively with expected and actual
effort (Scholl et al., 2015; Skvortsova et al., 2014).

There’s a growing argument that the vmPFC computes valuation primarily based on internal bodily signals, whereas the
dmPFC contributes to valuation based on external sensory information from the environment (Bouretand Richmond, 2010;
Howard et al., 2015; Nakao et al., 2012). This argument can be supported by the evidence that the vmPFC is the main target
of the dopaminergic projection from the midbrain, which is modulated by either food intake (de Araujo et al., 2012) or direct
vagus nerve stimulation (Han et al., 2018). Furthermore, the vmPFC activity is modulated by the experimentally-induced dopa-
mine level (Jocham et al., 2011), visceral signals like hunger and satiety (Howard et al., 2015; Roy et al., 2012), and outcome
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devaluation (de Wit et al., 2009; Valentin et al., 2007). Unlike the vmPFC, the dmPFC has been implicated in various psycho-
logical functions such as detecting and resolving conflicts among competitive responses (Shenhav et al., 2016), and searching for
a new value beyond the current familiar state (Domenech et al., 2020; Kolling et al., 2016). Consistent with these findings, func-
tionally competitive roles between the vmPFC and the dmPFC have been reported. For example, the vmPFC is associated with
learning habit-like behaviors, which are formed progressively through overtraining, whereas the dmPFC is responsible for volun-
tary and goal-directed initial responses (Killcross and Coutureau, 2003). In addition, vmPFC activity increases when agents are
more likely to repeat the same decision, whereas dmPFC activity increases when subjective value of the ongoing plan drops and
a search for a new plan becomes required (Domenech et al., 2020). Finally, larger and smaller differences in value between two
alternative options in a choice task were associated with greater activity in the vmPFC and the dmPFC, respectively (Hackel et al.,
2017; Piva et al., 2019). In summary, all the evidence suggests that the vmPFC alone can compute the value of a decision in
a familiar or well-practiced task, whereas the dmPFC needs to be engaged to integrate additional information from the environ-
ment when there’s a conflict to be resolved.

Insula

The anterior insula together with the mid-cingulate cortex has been strongly implicated in negative emotions such as pain (Wager
et al., 2013), disgust (Uddin et al., 2017), and financial loss (Kim et al., 2011; Kuhnen and Knutson, 2005). Not surprisingly, it has
also been reported to be involved in avoidance behavior. For example, insula activity was shown to correlate with aversive predic-
tion error signals in the avoidance condition (Kim et al., 2006; Pessiglione et al., 2006; Samanez-Larkin et al., 2008; Seymour et al.,
2004), and damage to the insula selectively impairs punishment-based avoidance learning, while leaving intact reward-based
approach learning (Palminteriet al., 2012). Notably, another line of research has also suggested that the insula along with the
mid-cingulate cortex comprise a salience network which is specialized to detect salient changes in the environment and is poten-
tially responsible for behavioral switching (Dajani and Uddin, 2015).

Amygdala

The amygdala has been strongly implicated in aversive learning and avoidance behaviors (De Martino et al., 2010; Mason et al.,
2006; Mobbs et al., 2009; Schwartz et al., 2003). However, there is also evidence that the amygdala is involved in both approach
and avoidance behaviors, possibly serving a broader role as a behavioral relevance detector (Paton et al., 2006; Sander et al., 2003;
Schlund and Cataldo, 2010). In addition, both empirical and theoretical works suggest that the amygdala is related to associative
ambiguity or predictive uncertainty (Hsu et al., 2005; Whalen, 2007).

Dopamine Versus Serotonin Functions

Dopamine (DA) is well known to be one of the major neurotransmitters related to reward learning and approach behaviors
(Cohen et al., 2012; Matsumoto and Hikosaka, 2009; Pessiglione et al., 2006; Schultz, 1998). Unlike DA, serotonin (5-HT)
has been mainly associated with avoidance behaviors (Crockett et al., 2009; Evers et al., 2005; Geurts et al., 2013; Macoveanu,
2014), and its primary functions appear to be roughly opposite to those of DA (Boureauand Dayan, 2011; Cools et al., 2011;
Daw et al., 2002). However, there is also evidence that 5-HT can be involved in approach behavior, especially when animals
have been trained to wait for a reward (Kranz et al., 2010; Li et al., 2016). For example, optogenetic activation of 5-HT neurons
promoted waiting for an expected reward in a delayed reward task, suggesting their role in the reward anticipatory behavior (Fon-
seca et al., 2015; Miyazaki et al., 2011; Miyazaki et al., 2014; Schweighofer et al., 2008; Zhou et al., 2015). Such a reward antic-
ipatory function of 5-HT may be related to its more general function of inhibiting perseverative responding and promoting
cognitive flexibility (Matias et al., 2017). Supporting this idea, it was shown that 5-HT could contribute to cognitive flexibility
by directly suppressing both impulsive and perseverative responses through behavioral inhibition (Boureau and Dayan, 2011;
Cools et al., 2011).

5-HT can decrease DA-induced behavior-reinforcing effect, potentially balancing the effects of DA (Fischer and Ullsperger,
2017), and the modulatory effects of DA on 5-HT neurons are often weaker than those of 5-HT on DA neurons (Cools et al.,
2011). Such a modulatory effect of 5-HT on DA can also be supported at least partly by the differences between them in
anatomical connectivity. First, the habenula is known to increase 5-HT release and inhibit DA neurons, and has been strongly
implicated in aversive learning (Hikosaka, 2010). It is noteworthy, however, that habenula lesion impairs active avoidance
learning, but not the defensive behavior induced by classical fear conditioning (Amo et al., 2010). In addition, the habenula
plays a key role in switching behavioral strategies by integrating new evidence with prior experience (Palumbo et al., 2020).
Second, DA projections from the ventral tegmental area are rather confined to the ventral cortico-striatal loops (Murtyet al.,
2014), whereas serotonergic projections are more extensive to include more dorsal cortico-striatal loops as well as the saliency
network including the insula and the anterior mid-cingulate cortex (Bar et al., 2016). These differences in network connectivity
between DA and 5-HT can be supported by both animal and human studies. For example, aggression is associated with
increased DA level in the ventral striatum and decreased 5-HT level in the mPFC in rats (van Erp and Miczek, 2000), and
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the degree to which dorsal striatal activity correlated with expected future rewards was enhanced by an increase in 5-HT level,
whereas the degree to which ventral striatal activity correlated with expected immediate rewards was enhanced by a decrease in
5-HT level in humans (Tanaka et al., 2007).

In summary, although approach and avoidance behaviors appear to be served by distinctive neural circuitries and neuromodu-
latory systems, many mixed findings exist. In fact, these neural features associated with approach and avoidance seemmore likely to
reflect the degree to which external sensory information is required to address internal bodily needs as an agent needs to update pre-
existing behavioral strategy. For example, the ventral cortico-striatal loop and DA system may be specialized for reinforcing previ-
ously successful behavioral strategy, whereas the dorsal loop, the saliency network, and 5-HT systemmay be involved in suppressing
previously failed response and searching for a new strategy. This can be related to the long-held idea of stability-plasticity
(Grossberg, 1980) or exploitation-exploration dilemma (Daw et al., 2006). To elaborate this view, I will introduce a hierarchical
allostatic regulation model of valuation below.

Hierarchical Allostatic Regulation Model of Approach and Avoidance Learning

Homeostasis can be a major drive underlying a wide range of behaviors in vertebrates (Cannon, 1939; Craig, 2003). In this
sense, both approach and avoidance can be viewed as different subtypes of behavioral strategies to address the imbalance of
bodily homeostasis. For example, an animal may approach food to address reduced glucose level in the blood and may
avoid a pain-inducing stimulus to maintain homeostatic state in bodily tissue. Therefore, from this point of view, it can
be argued that approach and avoidance behaviors serve the common goals, that are, preventing and maintaining bodily
homeostasis.

If both approach and avoidance are simply different means of achieving the same goal, then how is it that we often witness
seemingly segregated neural features distinctively related to each of them? The answer may lie in the fundamental asymmetry
in the strategy and the amount of external sensory information required for achieving the goals. For example, a reward can be
a sign that you may stay in the current state or repeat what you just did, whereas a punishment can be a sign that you need to
find other alternative actions than what you just did (Hikosaka, 2010). Such an asymmetry could be in parallel with the well-
known decision heuristic of win-stay lose-shift, which has been proven evolutionarily advantageous and more powerful than
other complex rules (Nowak and Sigmund, 1993). According to this strategy, an agent repeats the previous action if the
outcome was satisfying and seeks alternative actions otherwise, dealing with failure vs. success in a completely different
manner. Therefore, at least parts, if not all, of the neural differences between approach and avoidance listed above may reflect
this fundamental asymmetry between them in terms of strategy for determining complexity and type of information to be
processed.

Recent theoretical works propose hierarchical allostatic regulation models of brain function for computing values of decision,
which can explain how our brain creates, maintains, and updates values of decision in various situations (Kim, 2020; Smith et al.,
2017). According to these models, the brain consists of multiple functionally dissociable layers or levels that are hierarchically orga-
nized such that the lower levels are more sensitive to internal signals from bodily organs and the higher levels are more sensitive to
external signals from the environment. When conflicts occur at the lower levels, the upper levels would be engaged to resolve them
by increasing sensitivity to incoming external sensory signals from the environment. The upper level can take over decision control
temporarily to search for a new and more sophisticated value of decision. The upper level then sends prediction signals to update
the pre-existing value at the lower level and continues this cycle of search until it finds a new value that can effectively resolve the
conflict at the lower level (Fig. 1).

This model can provide an alternative and perhaps more comprehensive account of why the ventral and dorsal cortico-striatal
loops are often engaged in approach and avoidance behavior, respectively. For example, unlike approach behaviors, avoidance
behaviors would require greater amounts of external information because an agent needs to search for other options except for
the one just selected and invalidated, which would then require an engagement of the dorsal loop that is more involved in pro-
cessing additional external information. From this perspective, one can speculate that experiencing negative outcome may trigger
neural processes of re-allocating attention to the environment to search for a new, potentially better, alternative, whereas expe-
riencing positive outcome may elicit a simpler strategy of maintaining previously chosen behavior that have led to a successful
consequence. According to this model, the insula and the amygdala, which have been implicated in avoidance behavior, also
contribute to detecting conflicts and activating external valuation to resolve the conflicts based on additional external sensory
information. Furthermore, 5-HT may additionally recruit the external valuation system, which would then interact with the
internal system to resolve the conflicts, whereas DA influences are rather confined to the internal valuation system. Such a hier-
archical nature of the difference between approach and avoidance could also provide a more comprehensive account for why
insula damage, which affects the external valuation, impairs avoidance learning but not approach learning (Palminteriet al.,
2012), whereas vmPFC damage, which affects the internal valuation, can abolish both approach and avoidance learning (Camille
et al., 2011; Wheeler and Fellows, 2008) because the engagement of the external valuation requires conflicts in the internal
valuation.
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Conclusions and Future Directions

In this article, it was suggested that both approach and avoidance behaviors serve the common goals of survival ultimately aimed at
maintaining bodily homeostasis, and that the asymmetry between approach and avoidance behaviors may arise from the degree to
which the two types of behavior differ in terms of utilizing external information from the environment. An alternative model of
approach and avoidance behaviors, based on the hierarchical allostatic regulation model, was proposed, which predicts that
different levels of the cortico-striatal loops would be engaged as a function of the amount of external information that needs to
be processed, regardless of whether they are approach or avoidance. This model is expected to present many testable hypotheses
and questions that could spur research in new directions to improve our understanding of the neural networks involved in approach
and avoidance behaviors.
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